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The probability of occurrence of fluctuations around nonequilibrium steady states is 
discussed from a kinetic viewpoint. It is shown that in a large class of continuous media 
it is possible to extend the thermodynamic theory of fluctuations, provided one uses 
suitable steady-state parameters rather than equilibrium quantities. 

KEY WORDS: Fluctuations; stochastic processes; continuous media; master equation 

I .  I N T R O D U C T I O N  

in a previous paper (Ref. 1, hereafter referred to as I), we presented an analysis of  
the fluctuation properties of  open thermodynamic systems characterized by a discrete 
set of  variables. Using a master-equation approach, we have been able to show that 
the results of the equilibrium theory of fluctuations can be generalized immediately 
to the problem of fluctuations around states arbitrarily far f rom equilibrium, provided 
one uses suitable asymptotic approximations (or, alternatively, provided the limit 
of  relatively small fluctuations is taken). Essential for the derivation of the results 
has been the use of  an assumption that we have presented in I as the decoupling 
assumption. Its content is as follows. The concept of  a steady nonequilibrium state 
corresponds to an approximation valid when the characteristic time scales of an 
overall isolated system separate into very long ones (such as those determining 
the time evolution of  the external reservoirs) and short ones (determining the evolution 
of a nonisolated system in contact with the reservoirs). I t  may thus be expected that 
the internal state of  the system does not influence directly the state of  the reservoirs. 
This is the decoupling assumption; in I we have shown that it permits one to deduce 
a closed master equation for  the eVolution of  the system, in which the state variables 
of  the reservoirs appear as parameters. 
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At first sight, it would seem that the methods and the results of  I are limited 
to the case of discrete systems, for which the master equation is an ordinary 
differential-difference equation. It is the purpose of the present note to discuss an 
extension of the results to a typical continuum problem, for example, the problem 
of internal energy fluctuations around nonequilibrium states. Again the master 
equation approach will be used throughout. The problem will be approached in 
two stages. In Section 2, we consider a model corresponding to a Knudsen gas in 
contact with two heat and matter reservoirs. In this case, the interactions between 
system and reservoirs are easily accounted for and the problem admits a general 
solution. In the limit of small fluctuations, the result is an Einsteinlike formula as in I. 
In Section 3 we consider the problem of energy fluctuations in a strongly coupled 
system. To simplify the analysis, we limit ourselves from the very start to the small- 
fluctuation case. We are then able to derive generalized Einstein formulae as in 
Section 2. Let us recall that in the case of continuous media the Einstein formula 
for energy fluctuations leads to ~2,~) 

(AE)~ dv] 
p(E) ~ e x p  [-- f C~kT~(r) (1) 

where p is the probability function, T(r) is the local temperature and C~ the heat 
capacity, and dv refers to a volume integration. 

Some comments and deductions are presented in Section 4. 

2. E N E R G Y  F L U C T U A T I O N S :  T H E  K N U D S E N  GAS M O D E L  

We first consider the limiting case of a system in contact with two heat reservoirs 
at temperatures T1 and T.2. The ratio (T2 -- T1)/T~ can be made large, thus accounting 
for arbitrary quasistationary states far from equilibrium. Our problem is to describe 
the energy fluctuations around such steady states. To this end, we set up a master 
equation for the probability function p(E~, E~, E, t) for having, at time t, the energy 
values El ,  E~ for the two reservoirs and an energy value E for the system. As in I, 
we again adopt a Markovian stochastic approximation. It  will also be convenient 
to discuss the energy fluctuations at constant pressure. 

The principal difficulty encountered in writing such a master equation lies in 
the explicit form of the transition probabilities which express the efficiency of energy 
transfer between system and reservoirs. These transition probabilities depend 
ultimately upon the forces of interaction between system and reservoirs. In this section, 
we discuss a model for these interactions which corresponds to a Knudsen gas. 
The reason for choosing this model is the following. Let P(E -k AE) be the transition 
probability for going from a state of energy E -I- AE to a state E. In a Knudsen gas, 
the intermolecular interactions are negligible and the transfer of energy occurs 
always through a transport of  mass. It is known from thermodynamics ~2) that the 
energy carried in such a process is equal to 

AE ----- nkT (2) 
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n being the number of molecules transported between system and reservoir. Therefore, 
by adopting the Knudsen gas model, we automatically have the means to specify 
the energy variations in a transition due to a system-reservoir interaction. Finally, 
the form of the function P(E) itself is implied by the fact that we deal with systems 
of noninteracting particles. It follows that 

P(E)  = K ~  (3) 

K being a suitable proportionality factor depending upon the structure of the system 
and of the reservoirs. 

We are now able to write the equation for the probability function p(Ej, E2, E). 
Using the methods of Ref. 1 and the assumption of stochastic independence between 
the effects of the two reservoirs upon the system, it is straightforward to obtain 

~t P(Ez ' E2, E) = K[(E1 + AE) p(E1 + AE, E2, E -- AE) -- EIp(EI , E2, E)] 

+ K[(E + AE) p(Ez -- AE, E2, E + AE) -- Ep(E~, E2, E)] 

+ K[(E + AE) p(E~, E + AE, E~ -- AE) -- Ep(E1, E2, E)] 

+ K[(E2 + AE) p(Ex, E~ + AE, E -- AE) -- E2p(Ez, E2, E)] 

(4) 

We have used the additional assumption that the energy transfer AE as given by (2) 
is the same for all transitions. 

It is convenient to define the new set of variables 

& = E J A E  

R = E/,~E 

( i =  1,2) 
(5) 

Equation (4) then transforms into a finite difference form which is identical to the 
form arising in the chemical kinetical problems discussed in I. By transforming to 
the generating function space (1,4) and by invoking the deeoupling assumption 
introduced in I, we finally obtain the solution 

~ 

p = [exp(--Rst)] E! (6) 

where Est is the average steady-state value of R: 

&, = N,(& + &)/2u~ (7) 

and Ns and N,r are the average numbers of particles in the system and in the reservoir, 
respectively. 

In the limit of small fluctuations, Eq. (6) reduces to 

p --~ exp[--(E -- E)~/2EkT] (8) 
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where 

For a Knudsen gas, 

therefore, 

T = (Tz -+- T~)/2 (8a) 

E = N~kT = C~T 

p ~.~ exp[--(AE)2/2C~kT ~] (9) 

This result is the limit of the thermodynamic formula (1) corresponding to two 
reservoirs rather than that of a continuous distribution of temperature. In the same 
way as in I, the difference between Eqs. (9) and (1) is that, in Eq. (9), the parameter T 
refers to the steady-state temperature distribution rather than to the equilibrium 
value appearing in the usual thermodynamic result. 

The generalization to the case of an arbitrary number of reservoirs is straight- 
forward and will not be reproduced here. The result is again in agreement with the 
classical thermodynamic formulae of fluctuation theory. 

3. ENERGY F L U C T U A T I O N  IN  S T R O N G L Y  C O U P L E D  SYSTEMS 

In this section, we present a generalization of the treatment of Section 2 to 
systems whose coupling with reservoirs cannot be satisfactorily considered in the 
simple Knudsen limit. We again consider a system in contact with two heat reservoirs. 
In agreement with the Markovian stochastic approximation, the evolution of the 
probability density function p(E, t) will be given by the Smoluchowski equation I~) 

p(E, t 4- At) = f dE' qI(E'/E, At) p(E', t) 4- f dE" q~(E"/E, At) p(E", t) (10) 

where q~(E'/E, At)  are the probabilities for transitions leading from a state of energy 
E to a state of energy E' due to the interactions between the system and the ith 
reservoir. 

Because of the complicated structure of Eq. (10) in the general case, we only 
discuss here the limit of small energy changes during a transition: 

(E -- E')/E ~ I, (E -- E")/E ~ 1 (11) 

These assumptions do not confine the system close to equilibrium (see LaxCS)). 
Upon expanding Eq. (10) in powers of the two smallness parameters introduced 

in (11) and retaining the first nontrivial terms, we finally obtain a Fokker-Planck 
equation with nonlinear coefficients: r 

~t BE Az(E) p(E) -- A2(E) p(E) 4- ~ DI(E) p(E) 4- ~ Dz(E ) p(E) (12) 
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where we have defined 

A~(E) = (1~At) f dE' q~(E/E', At)(E'  --  E) 

Di(E) = (1/2 At)  f dE" q~(E/E', At)(E'  -- E) 2 

(13a) 

(136) 

We also note the usual normalization conditions 

F, f dE' q~(F4E', At) = 1 ( 1 4 )  
i 

In this section, we only study the limit of Eq. (12) corresponding to small 
fluctuations: 

(E - E)/E ~ 1 (15) 

where E is the average value of the energy in the system. Again assumption (15) 
does not imply close to equilibrium conditions. Upon expanding Eq. (12) and 
retaining the first nontrivial terms, we obtain an ordinary Fokker-Planck equation 
with linear coefficients. This equation may then be used to calculate the mean-square 
deviation of the energy fluctuations. The final result is 

DI(E ) + D~(E) (16) 
( (E  - -  E) 2)a~ = ~ + ~ r  _ 1 

where we define 

= - f  dE' (eq,/eF~)E (E' - -  ~) (17) 

At this point, it is necessary to specify the function q~ somewhat more. Let or(E) 
be the density of states function of the system. The transition probability q~ assumes 
then the form 

with 

qi 3(E E')(1 l,: At)  + W ~ At  (lSa) 

We.e, = t~,E'a~(E') (18b) 

tE,E" being proportional to the cross section for an E--+ E' transition and l being 
a constant. Equation (17) can be written as 

ser = -- f dE' (~t},e,/OE) a,(E')(E' - -  E) (19) 

We now introduce the following fundamental, physically reasonable assumption. 
We consider that t~z.e, as a function of E and E' depends upon the energy differences 
E -- E' only: 

~t~,E;/~E = --~tE.E,/~E' (20) 
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Using Eq. (20), expression (19) reduces to 

-~- -- t~.E.ai(E ) ~[ln ~,(E')]/~E' + 1 (21) 
i 

On the other hand, it is well known that (z) 

~[ln a~(E)]/eE = 1/k T~(E) (22) 

since the system is at equilibrium with each of the individual reservoirs along the 
boundary of thermal contact. 

Upon expanding T,(E) around Ti(E) and retaining terms of order of (E -- E) z, 
we obtain (cf. Ref. 3) 

(E -- .E) 2 = Dx(E) + D2(E) (23) 
(A~/kT~) + (A2/kT~) + [D,(P~)/C~(T~) 7"1 ~1 + [D=(P.)/C~,(T~) Te~t 

Equation (23) expresses the fluctuations around a quasistationary state arbitrarily 
far from equilibrium. 

Unfortunately, the complicated structure of (23) does not permit a simple 
solution in terms of thermodynamic quantities. However, if we confine the system 
to steady states close to equilibrium, it is again possible to recover the thermodynamic 
result (1). Let us set 

TI = r - - A T ,  T~ = r - t - A T  

where T is the temperature of the system. For states close to equilibrium, A TIT is 
small. Upon expanding (23) around T and retaining terms of order A T /T  only, 
we obtain 

(E -- E) 2 = Dz(E) + D~(E) 
1 1 

kT [AI(E) + A2(E)] + ~ [DI(E ) + De(Z)] 

TAT C-- AT 
+ - A2(E)] + - -  D2(E)] + T 1  

(24) 

It is easy to show that Az -- Ae and Dz -- D~ are of order A T, and therefore the 
corresponding terms in (24) are of order A T 2 and thus negligible. 

Moreover, it can be shown that, if one computes the total energy flux in the 
system using Eq. (12) and if one requires it to vanish at the steady state (as it should), 
one obtains the condition 

AI(E ) @ A2(E ) = 0 (25) 

Equation (24) reduces to 

< ( E -  E)2> v = kT2C  ( 2 0  

where T is the average nonequilibrium temperature in the system. Under the same 
conditions, the solution of Eq. (12) reads 

p(E) ~-- exp[--(E -- F.)2/2C~kT 2] (27) 
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We have therefore obtained a formula similar to the thermodynamic result (1). 
Again the generalization of this result to a system in contact with an arbitrary 
number of reservoirs is straightforward. It should be mentioned that a study of 
nonequilibrium stationary states close to equilibrium using a stochastic interaction 
model with arbitrary external reservoirs has been made by Lebowitz and Bergmann.~6) 
These authors, however, deal with the transport properties of the system rather 
than with the fluctuations of thermodynamic quantities. 

4. D I S C U S S I O N  

In this paper, we have followed a master-equation approach to discuss the 
thermodynamic energy fluctuations of a system in contact with a number of energy 
reservoirs at different temperatures. The main result we have derived is that the 
classical equilibrium fluctuation theory can be immediately extrapolated to arbitrary 
far-from-equilibrium situations, at least for the Knudsen gas model. For strongly 
coupled systems, we have only been able to show its validity for steady states close 
to equilibrium. 

An alternative (nonthermodynamic) way of formulating the problem of fluctua- 
tion of energy or temperature would be to adopt the methods of stochastic differential 
equations and consider the Fourier heat transfer equation as stochastic37) More 
precisely, consider a system in contact with two heat reservoirs. The steady-state 
Fourier equation reads 

V2T = 0 (28) 

This equation can be solved with stochastic boundary conditions. The most natural 
conditions one can set correspond to a temperature distribution of the reservoirs 
given by the equilibrium formula (1) and to the absence of correlations between 
the two reservoirs. The surprising result is then that the probability distribution for 
temperature (or for energy) fluctuations inside the system does not reduce to one 
of the thermodynamic forms derived in Section 2 or 3. Conversely, we have shown 
that, in order to obtain the thermodynamic result for the temperature fluctuations 
in the system, it is necessary to introduce a distribution of the external reservoirs 
involving complicated cross-correlations. We may conclude, therefore, that the 
stochastic-differential-equation approach to fluctuations has no direct relevance to 
the problem of thermodynamic fluctuations. 
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